Optic Cup

The development of the eye is a complex multifactorial symphony of signaling molecules, receptors, and molecular gradients organized in a melody of the time and space during embryogenesis. Understanding this process within the eye allows us to have a better understanding of the basis of congenital eye diseases.
The optic cup is particularly important to the proper formation of the eye, as it forms all major structures of the globe, except for the lens. Congenital glaucoma, retinal detachment, and coloboma are phenomena related to defects in the optic cup or its associated structures, and all of these can have serious consequences for the sight of the patient.
The development of the primitive eye begins at approximately week 3 of gestation with the burgeoning of the optic sulcus from the periocular mesenchyme. The optic sulci are bilateral invaginations on both sides of the anterior neural tube at the diencephalon. As the sulci deepen, they become optic pits and eventually transform into the optic vesicles as they extend toward surface ectoderm.
Both surface ectoderm and the optic vesicles secrete/excrete extracellular matrix and adhere to each other. As the optic vesicles extend outward, the proximal attachment to the forebrain becomes the optic stalk. The optic vesicles aid in the migration of neural crest cells, which contribute to future development.
The two layers forming the optic cup is a continuous tissue that gives bends at a hinge point known as the optic cup lip, and that marks the border of the outer pigmented layer and inner neural layer. The anterior portion of the optic cup gives rise to the pars caeca retinae. This structure, in turn, will go on to form the ciliary body, iris, and pupillary muscles.
The posterior portion of the optic cup forms the retina. The outer layer of the optic cup forms the retinal pigmented epithelium. The inner layer of the optic cup eventually forms the outer nuclear layer (which contains rods and cones), the inner nuclear layer (which contains bipolar cells), and the ganglion layer (which contains ganglion cells).
Function
The optic cup gives rise to the entire globe, along with its associated inner structures except for the lens, which includes the ten layers of the retina that contains rods, cones, bipolar cells, amacrine cells, horizontal cells, and the complex interplay between these cells that help process photons into three-dimensional vision.
In summary, the optic cup is an embryologic structure that gives rise to many structures in the globe. Also, signaling from the optic cup leads to the development of additional intra-ocular and extra-ocular structures. Dysgenesis can result in a wide array of disorders, from retinal detachment to glaucoma to anterior segment dysgenesis.
The journal invites different types of articles including original research article, review articles, short note communications, case reports, Editorials, letters to the Editors and expert opinions & commentaries from different regions for publication. A standard editorial manager system is utilized for manuscript submission, review, editorial processing and tracking which can be securely accessed by the authors, reviewers and editors for monitoring and tracking the article processing.
Manuscripts can be uploaded directly through mail id: ophthalmologist@eclinicalsci.com
Online Submission: https://www.pulsus.com/submissions/ophthalmologist-clinical-therapeutic-journal.html
Media Contact
Sarah Rose
Journal Manager
The Ophthalmologist: Clinical and Therapeutic Journal
Email: ophthalmologist@eclinicalsci.com